Promedios análisis técnico medias móviles se utilizan para suavizar las fluctuaciones a corto plazo para obtener una mejor indicación de la tendencia de los precios. Los promedios son indicadores de seguimiento de tendencias. Un promedio móvil de los precios por día es el precio medio de una acción durante un período elegido, aparece día a día. Para el cálculo de la media, hay que elegir un período de tiempo. La elección de un período de tiempo es siempre una reflexión sobre, más o menos retraso en relación con el precio en comparación con un alisamiento mayor o menor de los datos de precios. promedios de precios se utilizan como indicadores de tendencia siguientes y sobre todo como una referencia para sostenimiento de los precios y la resistencia. En promedios generales están presentes en todo tipo de fórmulas para suavizar los datos. Oferta especial: Beneficio con quotCapturing técnica Analysisquot media móvil simple Una media móvil simple se calcula sumando todos los precios dentro del período de tiempo elegido, divididos por ese período de tiempo. De esta manera, cada valor de datos tiene el mismo peso en el resultado promedio. Figura 4.35: simple, exponencial y ponderada media móvil. La curva gruesa negro en el gráfico de la figura 4.35 es una media móvil simple de 20 días. Media Móvil Exponencial Un promedio móvil exponencial da más peso, en términos porcentuales, a los precios individuales en un rango, en base a la siguiente fórmula: EMA (EMA precio) (EMA anterior (1 ndash EMA)) La mayoría de los inversores no se sienten cómodos con una expresión relacionada con el porcentaje de la media móvil exponencial más bien, se sienten mejor utilizando un período de tiempo. Si desea conocer el porcentaje en el que trabajar utilizando un período, la siguiente fórmula que da la conversión: Un periodo de tiempo de tres días corresponde a un porcentaje exponencial de: La curva negro delgada en la figura 4.35 es un móvil exponencial de 20 días promedio. Una media móvil ponderada media móvil ponderada pone más peso en datos recientes y menos peso en los datos más antiguos. Una media móvil ponderada se calcula multiplicando cada dato con un factor desde el primer día hasta ldquo1rdquo ldquonrdquo día para el más antiguo de los datos más recientes, el resultado se divide por el total de todos los factores de multiplicación. En un 10 días de media móvil ponderada, existe hace 10 días 10 veces más peso para el precio hoy en proporción al precio. Asimismo, el precio de ayer consigue nueve veces más el peso, y así sucesivamente. La curva de trazos negro delgada en la figura 4.35 es una de 20 días de media móvil ponderada. Simple, exponencial, ponderada o Si comparamos estos tres medias básicas, vemos que el promedio simple tiene más suavizado, pero por lo general también el mayor retraso después de las reversiones de precios. La media exponencial se encuentra más cerca del precio y también va a reaccionar más rápidamente a los cambios de precios. Pero más cortos correcciones período también son visibles en esta media debido a un efecto menos suavizado. Por último, la media ponderada sigue el movimiento de los precios aún más estrechamente. La determinación de cuál de estos promedios a utilizar depende de su objetivo. Si quieres un indicador de tendencia con un mejor suavizado y sólo una pequeña reacción a los movimientos más cortos, el promedio simple es lo mejor. Si desea una suavización donde todavía se pueden ver los cambios de período corto, entonces el promedio móvil exponencial o ponderado es la mejor opción. Desplazamiento por técnicas de suavizado Este sitio es una parte de los objetos de aprendizaje de JavaScript E-Labs para la toma de decisiones. Otros JavaScript en esta serie se han clasificado en diferentes áreas de aplicaciones en la sección de menú de esta página. Una serie de tiempo es una secuencia de observaciones que están ordenados en el tiempo. Inherente a la recogida de los datos tomados con el tiempo es una cierta forma de la variación aleatoria. Existen métodos para reducir de cancelar el efecto debido a la variación aleatoria. Ampliamente técnicas utilizadas son suavizado. Estas técnicas, cuando se aplica correctamente, revela con mayor claridad las tendencias subyacentes. Introduzca la serie de tiempo de modo de fila en secuencia, comenzando desde la esquina superior izquierda, y el parámetro (s), a continuación, haga clic en el botón Calcular para obtener la previsión de un período hacia delante. Los espacios en blanco no se incluyen en los cálculos, pero son ceros. En la introducción de sus datos al pasar de una celda a otra en la matriz de datos utilizar la tecla Tab no de flecha o la tecla de entrada. Características de las series de tiempo, lo que podría ser revelada mediante el examen de su gráfica. con los valores pronosticados, y el comportamiento de los residuos, modelado condición de pronóstico. Medias Móviles: Las medias móviles se encuentran entre las técnicas más populares para el pre-procesamiento de series de tiempo. Se utilizan para filtrar el ruido blanco al azar de los datos, para hacer más suave la serie de tiempo o incluso para enfatizar ciertos componentes informativos contenidos en las series de tiempo. Suavizado exponencial: Este es un esquema muy popular para producir una serie de tiempo suavizado. Mientras que en los últimos Medias Móviles observaciones tienen el mismo peso, suavizado exponencial asigna exponencialmente decreciente pesos como la observación envejecen. En otras palabras, las recientes observaciones se dan relativamente más peso en la predicción de las observaciones de más edad. Doble suavizado exponencial es mejor en tendencias de manipulación. Triple suavizado exponencial es mejor en el manejo tendencias parábola. Un promedio móvil ponderado exponenentially con una constante de alisamiento. corresponde aproximadamente a una media móvil simple de longitud (es decir, período) n, donde a y n están relacionados por: a / (n1) 2 o N (2 - a) / a. Así, por ejemplo, una media móvil ponderada exponenentially con una constante de alisamiento igual a 0,1 correspondería aproximadamente a una media móvil de 19 días. Y un 40 días de media móvil simple correspondería aproximadamente a un promedio móvil ponderado exponencialmente con una constante de alisamiento igual a 0,04878. Holts lineal de suavizado exponencial: Supongamos que la serie temporal no es estacional, pero hace tendencia pantalla. Holts método estima tanto el nivel actual y la tendencia actual. Observe que la media móvil simple es el caso especial de suavizado exponencial estableciendo el período de la media móvil a la parte entera de (2-alfa) / Alpha. Para la mayoría de los datos de negocio un parámetro alfa menor que 0,40 es a menudo eficaz. Sin embargo, se puede realizar una búsqueda de rejilla del espacio de parámetros, con 0,1 a 0,9, con incrementos de 0,1. Entonces la mejor alfa tiene el más mínimo error absoluto medio (Ma ERROR). Cómo comparar varios métodos de suavizado: Aunque hay indicadores numéricos para evaluar la precisión de la técnica de pronóstico, el enfoque más ampliamente es en el uso de la comparación visual de varias previsiones para evaluar su precisión y elegir entre los distintos métodos de pronóstico. En este enfoque, se debe trazar (utilizando, por ejemplo, Excel) en el mismo gráfico los valores originales de una variable de series de tiempo y los valores predichos a partir de varios métodos de pronóstico diferentes, facilitando así una comparación visual. Es posible que como el uso de los pronósticos pasados por las técnicas de suavizado JavaScript para obtener los valores de pronóstico últimos basados en técnicas que utilizan un solo parámetro sólo suavizado. Holt, y Winters métodos utilizan dos y tres parámetros, respectivamente, por lo que no es una tarea fácil para seleccionar el óptimo, o incluso cerca de los valores óptimos por ensayo y error para los parámetros. El suavizado exponencial simple enfatiza la perspectiva de corto alcance que establece el nivel de la última observación y se basa en la condición de que no existe una tendencia. La regresión lineal, que se ajusta a una recta de mínimos cuadrados de los datos históricos (o datos históricos transformados), representa el rango de longitud, que está condicionada a que la tendencia básica. Holts suavizado exponencial lineal captura información acerca de la reciente tendencia. Los parámetros en el modelo de Holt es los niveles de parámetros que se deben disminuir cuando la cantidad de variación de datos es grande, y las tendencias-parámetro debe aumentarse si la reciente dirección de la tendencia es apoyada por la causal algunos factores. La predicción a corto plazo: Observe que cada JavaScript en esta página ofrece un pronóstico de un paso por delante. Para obtener una previsión de dos paso por delante. sólo tiene que añadir el valor pronosticado hasta el final de ustedes series temporales de datos y, a continuación, haga clic en el mismo botón Calcular. Puede repetir este proceso unas cuantas veces para obtener los pronósticos a corto plazo necesarios. Respuesta en el hogar 13 13 combinado CAPÍTULO 13FORECA Revisión y preguntas de discusión1. Cuál es la diferencia entre demanda dependiente e independiente? La demanda independiente es la demanda de artículos pronosticados que ocurre por separado de la demanda de otros artículos. La demanda dependiente se calcula a partir de la demanda de otro artículo. La diferencia reside en la forma en que se determinan las dos demandas. Qué estrategias utilizan los supermercados, las compañías aéreas, los hospitales, los bancos y los fabricantes de cereales para influir en la demanda? Los supermercados cuentan con varios artículos de venta, artículos de regalo gratuitos (como una libra de mantequilla o una barra de pan), una venta ocasional de madnessrdquo cuando la tienda está abierta hasta tarde O incluso durante toda la noche. Las tarifas de alquiler, las tasas de edad (jubilados, niños, jóvenes), los vuelos chárter, las tarifas fuera de temporada, las comidas excepcionalmente buenas (o sin comidas por otros precios reducidos), más vuelos, conexión con hoteles o Alquiler de automóviles y agencias de viajes para ldquopackage tours, free stop-over en un tercer punto, o nuevos terminales. Hospitalsmdashpatients generalmente ir al hospital recomendado por su médico. Por lo tanto, los hospitales ofrecen espacio libre de oficina, asistencia de enfermería, equipos de laboratorio, puestos de personal y facturación del paciente a los médicos. Los hospitales frecuentemente anuncian su tasa de ocupación y tarifas de habitaciones, que tienden a influir en la demanda. Además, pueden convertirse en una organización de proveedores preferidos. Regalos gratis para cuentas nuevas, cheque gratuito, caja de seguridad gratuita, asesoramiento financiero gratuito, membresías de ldquoclub, rdquo y uso gratuito de loungesrdquo ldquoexecutive para los depositantes en varios rangos de cuenta de tamaño, salas de la comunidad para el club Reuniones. Los fabricantes de cereales, publicidad de TV, el patrocinio de algunos eventos de la juventud, premios gratis en caja de cereales, utilizando el espacio principal de la exhibición. Todos los métodos de pronóstico que utilizan el suavizado exponencial, el suavizado adaptativo y el suavizado exponencial incluyendo la tendencia requieren valores iniciales para obtener las ecuaciones. Cómo seleccionaría el valor inicial para, por ejemplo Ft-1 Los valores iniciales pueden ser simplemente un promedio de los primeros períodos, o una suposición. Si el valor inicial se toma un cierto período de tiempo (a diferencia de comenzar a utilizar las ecuaciones en datos muy recientes) la ecuación tendrá una oportunidad de ajustar como se lleva adelante a today.8. A partir de la elección del promedio móvil simple, el promedio móvil ponderado, el suavizado exponencial y el análisis de regresión lineal, cuál sería la técnica de pronóstico que consideraría la más exacta? De estas cuatro opciones, la media móvil ponderada es la más precisa, ya que los pesos específicos pueden colocarse en Acuerdo con su importancia. Los otros métodos hacen suposiciones, tales como una media, una línea recta o una curva exponencial. El promedio ponderado puede ser modificado a cualquier forma. Sin embargo, si se toma un largo período de tiempo, el promedio ponderado puede ser engorroso de usar. Además, a medida que pasan los períodos de tiempo, el usuario probablemente desearía cambiar los pesos. Esto añadiría la dificultad de utilizar las técnicas para un gran número de aplicaciones, como la previsión de la demanda de artículos de inventario. 1 Carga de materiales relacionados. El aprendizaje de Ace no es patrocinado ni endosado por ninguna universidad o college. Moving promedio y exponencial modelos de suavizado Como un primer paso para ir más allá de los modelos medios, modelos de caminata al azar, Y modelos de tendencias lineales, patrones no estacionales y tendencias pueden ser extrapolados usando un modelo de media móvil o de suavizado. El supuesto básico detrás de promediado y modelos de suavizado es que la serie de tiempo es estacionaria localmente con una media de variación lenta. Por lo tanto, tomamos una media móvil (local) para estimar el valor actual de la media y luego usar eso como el pronóstico para el futuro próximo. Esto puede ser considerado como un compromiso entre el modelo de la media y la deriva en el modelo del paseo aleatorio, sin. La misma estrategia se puede utilizar para estimar y extrapolar una tendencia local. Un promedio móvil a menudo se llama una versión quotsmoothedquot de la serie original porque los promedios de corto plazo tiene el efecto de suavizar los baches en la serie original. Al ajustar el grado de suavizado (el ancho de la media móvil), que podemos esperar para golpear algún tipo de equilibrio óptimo entre el rendimiento de los modelos de medias y caminar al azar. El tipo más simple de promedio de modelos es el. Sencilla (igualmente ponderados) Media Móvil: El pronóstico para el valor de Y en el tiempo t1 que se hace en el tiempo t es igual a la media aritmética de las observaciones más recientes M: (Aquí y en otros lugares que va a utilizar el símbolo 8220Y-hat8221 reposar para obtener la previsión de las series temporales Y hecha en la fecha previa temprano posible de un modelo dado.) Este promedio se centra en el periodo t (m1) / 2, lo que implica que la estimación de la media local tenderá a la zaga del verdadero valor de la media local por cerca de (m1) / 2 períodos. Por lo tanto, decimos que la edad promedio de los datos de la media móvil simple (m1) / 2 con respecto al período para el que se calcula el pronóstico: esta es la cantidad de tiempo en que las previsiones tienden a la zaga de los puntos de inflexión en el datos. Por ejemplo, si son un promedio de los últimos 5 valores, las previsiones será de unos 3 periodos tarde en la respuesta a los puntos de inflexión. Tenga en cuenta que si m1, el modelo de media móvil simple (SMA) es equivalente al modelo de paseo aleatorio (sin crecimiento). Si m es muy grande (comparable a la longitud del período de estimación), el modelo de SMA es equivalente al modelo de la media. Como con cualquier parámetro de un modelo de predicción, es costumbre para ajustar el valor de k con el fin de obtener el mejor quotfitquot a los datos, es decir, los errores de pronóstico más pequeños en promedio. Aquí está un ejemplo de una serie que parece mostrar fluctuaciones aleatorias alrededor de una media que varía lentamente. En primer lugar, permite tratar de encajar con un modelo de paseo aleatorio, lo que equivale a una media móvil simple de 1 plazo: El modelo de paseo aleatorio responde muy rápidamente a los cambios en la serie, pero al hacerlo se recoge gran parte de la quotnoisequot en el datos (las fluctuaciones aleatorias), así como la quotsignalquot (la media local). Si en lugar de probar una media móvil simple de 5 términos, obtenemos una puesta a punto más suave en busca de los pronósticos: El 5 plazo promedio móvil simple rendimientos significativamente más pequeños que los errores del modelo de paseo aleatorio en este caso. La edad promedio de los datos de esta previsión es de 3 ((51) / 2), de modo que tiende a la zaga de los puntos de inflexión en aproximadamente tres períodos. (Por ejemplo, una recesión parece haber ocurrido en el período de 21 años, pero las previsiones no dar la vuelta hasta varios períodos más tarde.) Tenga en cuenta que las previsiones a largo plazo del modelo de SMA son una línea recta horizontal, al igual que en el paseo aleatorio modelo. Por lo tanto, el modelo de SMA asume que no hay una tendencia en los datos. Sin embargo, mientras que las previsiones del modelo de paseo aleatorio son simplemente igual al último valor observado, las predicciones del modelo de SMA son iguales a una media ponderada de los valores recientes. Los límites de confianza calculados por Statgraphics para las previsiones a largo plazo de la media móvil simple no se ensanchan a medida que aumenta la previsión horizonte. Esto obviamente no es correcta Desafortunadamente, no existe una teoría estadística subyacente que nos dice cómo los intervalos de confianza debe ampliar para este modelo. Sin embargo, no es demasiado difícil de calcular estimaciones empíricas de los límites de confianza para los pronósticos a más largo horizonte. Por ejemplo, podría configurar una hoja de cálculo en la que el modelo de SMA sería utilizado para pronosticar 2 pasos por delante, 3 pasos por delante, etc., dentro de la muestra de datos históricos. A continuación, podría calcular las desviaciones estándar de la muestra de los errores en cada horizonte de pronóstico, y luego construir intervalos de confianza para los pronósticos a más largo plazo sumando y restando múltiplos de la desviación estándar correspondiente. Si tratamos una media móvil simple de 9 plazo, obtenemos previsiones aún más suaves y más de un efecto rezagado: La edad media es ahora de 5 puntos ((91) / 2). Si tomamos una media móvil de 19 plazo, el promedio de edad aumenta a 10: Tenga en cuenta que, de hecho, las previsiones están quedando atrás los puntos de inflexión en alrededor de 10 periodos. Qué cantidad de suavizado que es mejor para esta serie Aquí se presenta una tabla que compara sus estadísticas de errores, incluyendo también una 3-plazo promedio: Modelo C, la media móvil de 5 plazo, se obtiene el valor más bajo de RMSE por un pequeño margen sobre el 3 - term y 9 plazo promedios, y sus otras estadísticas son casi idénticos. Así, entre los modelos con las estadísticas de errores muy similares, podemos elegir si preferimos un poco más la capacidad de respuesta o un poco más de suavidad en los pronósticos. (Volver al comienzo de la página.) Browns suavizado exponencial simple (promedio móvil ponderado exponencialmente) El modelo de media móvil simple descrito anteriormente tiene la propiedad indeseable que trata los últimos k observaciones por igual y completamente ignora todas las observaciones precedentes. Intuitivamente, los datos del pasado deben ser descontados de forma más gradual - por ejemplo, la observación más reciente debería ser un poco más de peso que 2 más reciente, y el segundo más reciente debería ser un poco más peso que la 3 más reciente, y pronto. El modelo de suavizamiento exponencial simple (SES) logra esto. Vamos a 945 denotan un constantquot quotsmoothing (un número entre 0 y 1). Una forma de escribir el modelo es definir una serie L que representa el nivel actual (es decir, valor medio local) de la serie como se estima a partir de datos hasta el presente. El valor de L en el tiempo t se calcula de forma recursiva a partir de su propio valor anterior así: Por lo tanto, el valor suavizado actual es una interpolación entre el valor suavizado anterior y la observación actual, donde los 945 controles de la proximidad entre el valor interpolado a la más reciente observación. La previsión para el próximo período es simplemente el valor suavizado actual: De manera equivalente, podemos expresar el pronóstico siguiente directamente en función de las previsiones anteriores y observaciones anteriores, en cualquiera de las siguientes versiones equivalentes. En la primera versión, la previsión es una interpolación entre pronóstico anterior y observación anterior: En la segunda versión, el siguiente pronóstico se obtiene mediante el ajuste de la previsión anterior en la dirección del error anterior por una cantidad fraccionaria 945. está el error cometido en el tiempo t. En la tercera versión, el pronóstico es un ponderado exponencialmente (es decir, descontado) de media móvil con el factor de descuento 1- 945: La versión de interpolación de la fórmula de predicción es el más simple de usar si está implementando el modelo en una hoja de cálculo: se ajusta en una sola célula y contiene referencias a celdas que apuntan a la previsión anterior, la observación anterior, y la célula donde se almacena el valor de 945. Tenga en cuenta que si 945 1, el modelo SES es equivalente a un modelo de paseo aleatorio (sin crecimiento). Si 945 0, el modelo SES es equivalente al modelo de la media, suponiendo que el primer valor de suavizado se establece igual a la media. (Volver al comienzo de la página.) La edad promedio de los datos en el pronóstico a simple alisado exponencial es 1/945 con respecto al período para el que se calcula el pronóstico. (Esto no se supone que es obvio, pero se puede demostrar fácilmente mediante la evaluación de una serie infinita.) Por lo tanto, el simple previsión de media móvil tiende a la zaga de los puntos de inflexión en alrededor de 1/945 períodos. Por ejemplo, cuando 945 0.5 el retraso es de 2 945 periodos en los que el retraso es 0,2 5 0,1 945 periodos en los que el retraso es de 10 períodos, y así sucesivamente. Para una edad media determinada (es decir, cantidad de lag), el suavizamiento exponencial simple (SES) Pronóstico es algo superior a la previsión media móvil simple (SMA) porque pone relativamente más peso en la más reciente --i. e observación. es ligeramente más quotresponsivequot a los cambios que ocurren en el pasado reciente. Por ejemplo, un modelo de SMA con 9 términos y un modelo de SES con 945 0.2 ambos tienen una edad promedio de 5 para los datos en sus previsiones, pero el modelo SES pone más peso en los últimos 3 valores que lo hace el modelo de SMA y en el mismo tiempo doesn8217t totalmente 8220forget8221 sobre los valores de más de 9 períodos de edad, como se muestra en esta tabla: Otra ventaja importante del modelo SES sobre el modelo SMA es que el modelo SES utiliza un parámetro de suavizado que es continuamente variable, por lo que puede fácilmente optimizada mediante el uso de un algoritmo de quotsolverquot para minimizar el error cuadrático medio. El valor óptimo de 945 en el modelo SES para esta serie resulta ser 0.2961, como se muestra aquí: La edad promedio de los datos de esta previsión es de 1 / 0,2961 3,4 periodos, que es similar a la de un móvil simple 6 plazo promedio. Las previsiones a largo plazo del modelo de SES son una línea recta horizontal. como en el modelo de SMA y el modelo de paseo aleatorio sin crecimiento. Sin embargo, tenga en cuenta que los intervalos de confianza calculados por Statgraphics ahora divergen de un modo de aspecto razonable, y que son sustancialmente más estrecha que los intervalos de confianza para el modelo de paseo aleatorio. El modelo SES asume que la serie es un poco predictablequot quotmore que lo hace el modelo de paseo aleatorio. Un modelo SES es en realidad un caso especial de un modelo ARIMA. por lo que la teoría estadística de los modelos ARIMA proporciona una buena base para el cálculo de los intervalos de confianza para el modelo SES. En particular, un modelo SES es un modelo ARIMA con una diferencia no estacional, un MA (1) plazo, y sin término constante. también conocido como un modelo quotARIMA (0,1,1) sin constantquot. El MA (1) coeficiente en el modelo ARIMA corresponde a la cantidad 1- 945 en el modelo de SES. Por ejemplo, si encaja en un modelo ARIMA (0,1,1) sin el temor constante a la serie analizada aquí, el MA estimado (1) coeficiente resulta ser 0.7029, que es casi exactamente uno menos 0,2961. Es posible añadir el supuesto de un no-cero tendencia constante lineal a un modelo de SES. Para ello, sólo tiene que especificar un modelo ARIMA con una diferencia no estacional y un (1) término MA con una constante, es decir, un modelo ARIMA (0,1,1) con constante. Las previsiones a largo plazo tendrán entonces una tendencia que es igual a la tendencia promedio observado durante todo el período de estimación. No se puede hacer esto en conjunto con ajuste estacional, ya que las opciones de ajuste estacional se desactivan cuando el tipo de modelo se establece en ARIMA. Sin embargo, se puede añadir una tendencia exponencial constante a largo plazo a un simple modelo de suavizado exponencial (con o sin ajuste estacional) mediante el uso de la opción de ajuste de la inflación en el procedimiento de pronóstico. La tasa de quotinflationquot apropiado (porcentaje de crecimiento) por período se puede calcular como el coeficiente de la pendiente en un modelo de tendencia lineal ajustada a los datos en conjunción con una transformación logaritmo natural, o puede basarse en otra información, independiente sobre las perspectivas de crecimiento a largo plazo . (Volver a la parte superior de la página.) Browns lineales (es decir, dobles) modelos de suavizado exponencial de la media móvil y modelos SES asumen que no hay una tendencia de cualquier tipo en los datos (que es por lo general OK o al menos no muy malo para 1- previsiones paso por delante cuando los datos son relativamente ruidoso), y que pueden ser modificados para incorporar una tendencia lineal constante como se muestra arriba. Qué hay de tendencias a corto plazo Si una serie muestra una tasa variable de crecimiento o un patrón cíclico que se destaca claramente contra el ruido, y si hay una necesidad de pronosticar más de 1 periodo por delante, a continuación, la estimación de una tendencia local también puede ser un problema. El modelo simple de suavizado exponencial se puede generalizar para obtener un modelo lineal de suavizado exponencial (LES) que calcula las estimaciones locales de tanto nivel y la tendencia. El modelo de tendencia variable en el tiempo más simple es Browns lineales exponencial modelo de suavizado, que utiliza dos series diferentes alisado que se centran en diferentes puntos en el tiempo. La fórmula de predicción se basa en una extrapolación de una línea a través de los dos centros. (Una versión más sofisticada de este modelo, Holt8217s, se discute a continuación.) La forma algebraica de Brown8217s lineal modelo de suavizado exponencial, al igual que la del modelo simple de suavizado exponencial, se puede expresar en un número de formas diferentes pero equivalentes. La forma quotstandardquot de este modelo se suele expresar como sigue: Sea S la serie suavizada por enlaces sencillos, obtenido mediante la aplicación de suavizado exponencial simple de la serie Y. Es decir, el valor de S en el período t viene dada por: (Hay que recordar que, en virtud de simples suavizado exponencial, esto sería el pronóstico para Y en el periodo t1), entonces Squot denotan la serie suavizada doblemente obtenido mediante la aplicación de suavizado exponencial simple (utilizando la misma 945) de la serie S:. por último, el pronóstico para tk Y. para cualquier kgt1, viene dada por: Esto produce e 1 0 (es decir, engañar un poco, y dejar que el primer pronóstico es igual a la primera observación real), y e 2 Y2 Y1 8211. después de lo cual las previsiones se generan utilizando la ecuación anterior. Esto produce los mismos valores ajustados según la fórmula basada en S y S si éstas se puso en marcha el uso de S 1 S 1 Y 1. Esta versión del modelo se utiliza en la siguiente página que ilustra una combinación de suavizado exponencial con ajuste estacional. modelo Holt8217s lineal de suavizado exponencial Brown8217s LES calcula estimaciones locales de nivel y la tendencia al suavizar los datos recientes, pero el hecho de que lo hace con un único parámetro de suavizado un factor limitante para los patrones de datos que es capaz de encajar: el nivel y la tendencia no se les permite variar a frecuencias independientes. modelo Holt8217s LES resuelve este problema mediante la inclusión de dos constantes de suavizado, una para el nivel y uno para la tendencia. En cualquier momento t, como en el modelo Brown8217s, el no es una estimación L t del nivel local y una estimación T t de la tendencia local. Aquí se computan de forma recursiva a partir del valor de Y observó en el tiempo t, y las estimaciones anteriores del nivel y la tendencia por dos ecuaciones que se aplican suavizado exponencial a ellos por separado. Si el nivel estimado y la tendencia en el tiempo t-1 son L y T t82091 t-1. respectivamente, entonces el pronóstico para Y tshy que se habrían hecho en el momento t-1 es igual a L-1 t t t-1. Cuando se observa el valor real, la estimación actualizada del nivel se calcula de forma recursiva mediante la interpolación entre Y tshy y su pronóstico, L-1 t t t-1, usando pesos de 945 y 945. 1- El cambio en el nivel estimado, es decir, L t L 8209 t82091. puede interpretarse como una medición de ruido de la tendencia en el tiempo t. La estimación actualizada de la tendencia se calcula entonces de forma recursiva mediante la interpolación entre L T 8209 L t82091 y la estimación anterior de la tendencia, T t-1. usando pesos de 946 y 1-946: La interpretación de la tendencia constante de alisamiento 946 es análoga a la de los de nivel constante de alisamiento 945. Los modelos con valores pequeños de 946 asume que la tendencia cambia sólo muy lentamente con el tiempo, mientras que los modelos con 946 más grande asumen que está cambiando más rápidamente. Un modelo con un gran 946 cree que el futuro lejano es muy incierto, ya que los errores en la estimación de la tendencia-llegar a ser bastante importante cuando la previsión de más de un período que se avecina. (Volver al principio de la página.) El suavizado constantes de 945 y 946 se puede estimar de la forma habitual mediante la minimización del error cuadrático medio de las previsiones 1-paso-a continuación. Cuando esto se haga en Statgraphics, las estimaciones resultan ser 945 0,3048 y 946 0.008. El valor muy pequeño de 946 significa que el modelo supone muy poco cambio en la tendencia de un período a otro, por lo que, básicamente, este modelo está tratando de estimar una tendencia a largo plazo. Por analogía con la noción de que la edad promedio de los datos que se utiliza para estimar el nivel local de la serie, la edad media de los datos que se utiliza para estimar la tendencia local es proporcional a 1/946, aunque no exactamente igual a eso. En este caso que resulta ser 1 / 0.006 125. Esta isn8217t un número muy preciso ya que la precisión de la estimación de 946 isn8217t realmente 3 cifras decimales, pero es del mismo orden general de magnitud que el tamaño de muestra de 100 , por lo que este modelo tiene un promedio de más de un buen montón de historia para estimar la tendencia. La trama de previsión a continuación muestra que el modelo de LES estima una tendencia local de un poco más grande en el extremo de la serie de la tendencia constante estimado en el modelo SEStrend. Además, el valor estimado de 945 es casi idéntica a la obtenida ajustando el modelo SES con o sin tendencia, por lo que este es casi el mismo modelo. Ahora, hacen éstos se parecen a las previsiones razonables para un modelo que se supone que es la estimación de la tendencia local Si 8220eyeball8221 esta trama, parece que la tendencia local se ha convertido a la baja al final de la serie Lo que ha sucedido Los parámetros de este modelo se han estimado mediante la minimización del error al cuadrado de las previsiones de 1-paso adelante, no pronósticos a más largo plazo, en cuyo caso la tendencia doesn8217t hacen una gran diferencia. Si todo lo que está viendo son los errores 1-paso-a continuación, usted no está viendo el panorama general de las tendencias en (digamos) 10 o 20 períodos. Con el fin de conseguir este modelo más acorde con nuestra extrapolación de los datos de globo ocular, podemos ajustar manualmente la tendencia constante de alisamiento para que utilice una línea de base más corta para la estimación de tendencia. Por ejemplo, si elegimos para establecer 946 0.1, a continuación, la edad media de los datos utilizados en la estimación de la tendencia local es de 10 períodos, lo que significa que estamos promediando la tendencia de que los últimos 20 períodos más o menos. Here8217s lo que la trama de previsión parece si ponemos 946 0,1 945 0,3 mientras se mantiene. Esto parece intuitivamente razonable para esta serie, aunque es probable que sea peligroso extrapolar esta tendencia alguna más de 10 periodos en el futuro. Qué pasa con las estadísticas de error Aquí está una comparación de modelos para los dos modelos que se muestran arriba, así como tres modelos SES. El valor óptimo de 945.para el modelo SES es de aproximadamente 0,3, pero resultados similares (con poco más o menos capacidad de respuesta, respectivamente) se obtienen con 0,5 y 0,2. exp lineal (A) Holt. suavizado con alfa y beta 0,3048 0,008 (B) Holts exp lineal. suavizado con alfa 0,3 y beta 0.1 (C) de suavizado exponencial simple con alfa 0,5 (D) de suavizado exponencial simple con alfa 0,3 (E) de suavizado exponencial simple con alfa 0,2 Sus estadísticas son casi idénticos, por lo que realmente can8217t tomar la decisión sobre la base de los errores de pronóstico 1 paso por delante dentro de la muestra de datos. Tenemos que recurrir a otras consideraciones. Si estamos convencidos de que tiene sentido basar la estimación actual tendencia en lo que ha ocurrido en los últimos 20 períodos más o menos, podemos hacer un caso para el modelo con LES y 945 0,3 946 0,1. Si queremos ser agnóstico sobre si existe una tendencia local, entonces uno de los modelos SLS podría ser más fácil de explicar y también daría más pronósticos media-of-the-road para los próximos 5 o 10 períodos. (Volver al principio de la página.) Qué tipo de tendencia-extrapolación es mejor: La evidencia empírica horizontal o lineal sugiere que, si ya se han ajustado los datos (si es necesario) para la inflación, entonces puede ser imprudente extrapolar lineal a corto plazo tendencias muy lejos en el futuro. Tendencias hoy evidentes podrían crecer más en el futuro debido a causas variadas como la obsolescencia de los productos, el aumento de la competencia, y las depresiones cíclicas o repuntes en una industria. Por esta razón, suavizamiento exponencial simple menudo funciona mejor fuera de la muestra de lo que se podría esperar de otro modo, a pesar de su quotnaivequot horizontal extrapolación de tendencias. Amortiguadas modificaciones tendencia del modelo de suavizado exponencial lineal también se utilizan a menudo en la práctica de introducir una nota de cautela en sus proyecciones de tendencias. El modelo LES-tendencia amortiguada puede ser implementado como un caso especial de un modelo ARIMA, en particular, una (1,1,2) modelo ARIMA. Es posible calcular intervalos de confianza alrededor de las predicciones a largo plazo producidos por los modelos de suavizado exponencial, al considerarlos como casos especiales de los modelos ARIMA. (Cuidado: no todo el software calcula correctamente los intervalos de confianza para estos modelos.) La anchura de los intervalos de confianza depende de (i) el error RMS del modelo, (ii) el tipo de suavizado (simple o lineal) (iii) el valor (s) de la constante (s) de suavizado y (iv) el número de períodos por delante que se pronostica. En general, los intervalos se extienden más rápido a medida 945 se hace más grande en el modelo SES y se extienden mucho más rápido cuando se utiliza en lugar de lineal de suavizado simple. En este tema se tratará más adelante en la sección de modelos ARIMA de las notas. (Volver al principio de la página.) Cuál es la diferencia entre la media móvil y la media móvil ponderada? Una media móvil de 5 períodos, basada en los precios anteriores, se calcularía utilizando la siguiente fórmula: Con base en la ecuación anterior, Período mencionado anteriormente fue de 90,66. El uso de medias móviles es un método efectivo para eliminar las fluctuaciones de precios fuertes. La limitación clave es que los puntos de datos a partir de los datos más antiguos no se ponderan de forma diferente a los puntos de datos cerca del comienzo del conjunto de datos. Aquí es donde los promedios móviles ponderados entran en juego. Los promedios ponderados asignan una mayor ponderación a los puntos de datos más actuales, ya que son más relevantes que los puntos de datos en el pasado distante. La suma de la ponderación debe sumar a 1 (o 100). En el caso de la media móvil simple, las ponderaciones se distribuyen por igual, es por eso que no se muestran en la tabla anterior. Precio de cierre de AAPL La media ponderada es calcular multiplicando el precio dado por su ponderación asociado y luego sumar los valores. En el ejemplo anterior, el promedio móvil de 5 días ponderada sería 90.62. En este ejemplo, el reciente punto de datos se le dio la más alta ponderación de un 15 puntos arbitrarios. Puede ponderar los valores de cualquier valor que parezca. El valor más bajo de la media ponderada anterior en relación con el promedio simple sugiere la reciente presión de venta podría ser más significativo que algunos comerciantes anticipan. Para la mayoría de los comerciantes, la opción más popular cuando se utiliza promedios móviles ponderados es utilizar una mayor ponderación de los valores recientes. (Para obtener más información, echa un vistazo a la media en movimiento Tutorial) Lea acerca de la diferencia entre las medias móviles exponenciales y medias móviles ponderadas, dos indicadores de suavizado que. Lea Respuesta La única diferencia entre estos dos tipos de media móvil es la sensibilidad de cada uno de ellos muestra a los cambios en los datos utilizados. Leer respuesta Ver qué medias móviles han demostrado ser ventajoso para los comerciantes y los analistas y útil cuando se aplica a los gráficos de precios y. Leer respuesta Aprende cómo los comerciantes y los inversores utilizan alfa ponderada para identificar el impulso de un precio de acciones y si los precios se moverán más alto. Leer respuesta Aprender los períodos más comúnmente utilizados seleccionado por los comerciantes y analistas de mercado en la creación de las medias móviles de la superposición como técnico. Leer respuesta Comprender la forma de calcular los pesos de los costos de diferencia de capital y cómo este cálculo se utiliza para determinar. leer respuesta
No comments:
Post a Comment